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Measurements have been made of the Couette flow in the annular space between 
concentric cylinders with a radius ratio of 1.5, the outer cylinder being held stationary 
and the inner one rotated a t  speeds to  give Taylor numbers in the range 
1.0 x 104-2.3 x lo6 times the critical value for first instability of the steady viscous 
flow. Mean velocities have been measured both with Pitot tubes and with linearized 
hot-wire anemometers, and turbulent intensities and stresses, frequency spectra and 
space-time correlations have been obtained using single hot-wire anemometers of 
X-form and linear arrays of eight single-wire anemometers. For Taylor-number ratios 
to the critical number less than 3 x lo5, the most prominent feature of the flow is a 
system of toroidal eddies, encircling the inner cylinder and uniformly spaced in the 
axial direction with nearly the separation of the Taylor vortices of the viscous 
instability. They are superimposed on a background of irregular motion and, except 
within the thin wall layers, the toroidal eddies contribute more to the total intensity. 
With increase of rotation speed, the toroidal eddies lose their regularity, and they 
cannot be clearly distinguished a t  Taylor-number ratios beyond 5 x lo5. 

The change of flow type from quasi-regular toroidal to fully irregular turbulent 
takes place over an extensive range of Taylor-number ratio centred near 3 x lo5, and 
it may be linked with changes in the thin wall layers that separate the flow boundaries 
from the central region of nearly constant circulation. For ratios over 5 x lo5, an 
appreciable part of the wall layers is comparatively unaffected by flow curvature and 
has a logarithmic distribution of mean velocity similar to that found in channel flows. 
It is suggested that the motion in the wall layers changes from a set of Gortler vortices 
characteristic of curved-wall flow to the more irregular motion found on plane walls, 
causing the toroidal eddies to break into sections of length ranging from a considerable 
fraction of the flow perimeter to nearly the separation of the cylinders. Changes in 
the frequency spectra of the radial and azimuthal velocit'y fluctuations are consistent 
with such a change. 

1. Introduction 
In  1923, G. I .  Taylor showed both by calculation and experiment that, above a 

critical speed, the steady viscous flow between concentric rotating cylinders is 
unstable to small axisymmetric disturbances if the ratio of flow circulation a t  the 
inner cylinder to that at the inner one is less than unity. For circulation ratios between 
zero and one, the instability leads first to the development of toroidal eddies encircling 
the inner cylinder and equally spaced in the axial direction, while, for negative ratios, 
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pairs of radially separated, contrarotating eddies form, the motion of the inncr eddies 
much more intense than the outer ones. As the rotation speed increases, the toroidal 
eddies grow in strength before a series of transitions between multicellular modes with 
velocity varying periodically both in the azimuthal and axial dircetions (Coles 1965). 
The regularity of the motions and the complexity of transitions between modes has 
attracted much attention, and many papers have dealt wi th  theoretical and 
experimental work (for a recent review see Di Prima & Swinney 1981). 

Less is known about the irregular turbulent motions that succeed the cellular modes 
at large speeds of rotation. Three classes of flow might be distinguished, with 
characteristics that  might be related either to the mechanism of transition or to the 
Rayleigh criterion for stability of curvcd flow. Flows with circulation ratios greater 
than one are stable to all small axisymmetric perturbations, and undergo catastrophic 
transition directly to turbulent motion at Reynolds numbers (based on flow: width 
and velocity difference) considerably larger than that for plane Couctte flow. For the 
flow with the inner cylinder stationary, the mean transmitted torque is only sevcral 
times the calculated value for steady viscous flow, even for Reynolds numbers as high 
as lo5 (Taylor 1936). The whole ofthe annular space is not filled with fluid in turbulent 
motion, which is confined to spiral bands embedded in nearly laminar flow (Van At ta  
1966). If the cylinders rotate in opposite directions, transition to  turbulent flow takes 
place at speeds above the critical speed for development of toroidal eddies, but the 
turbulent motion is weak, and, to judge from the vclocity proji1r.r of Wang & Gclhar 
(1970), the transmitted torque at Reynolds number of lo5 is only several times the 
calculated viscous torque. In  both these kinds of flow, the mean circulation increases 
radially outward over most of the annular region, and the Rayleigh criterion implies 
that the effects of flow curvature are stabilizing. 

In  flows with circulation ratios between zero and one, the gradient of circulation 
is everywhere destabilizing, and initial instability owurs at Reynolds numbers 
typically one-tenth of that  for plane Couette flow. In  the flow with the outer cylindcr 
stationary, the multicellular modes persist to rotation speeds of about twenty times 
the critical speed, to be succeeded by irregular motion containing well-developed 
toroidal eddies similar to those of the initial instability (Gollub & Swinney 1975; 
Koschmieder 1979; Barcilon et al. 1979). Cnlike the other two kinds of Couette flow, 
the torque is large compared with the calculated viswus torque, and the mean 
circulation is almost constant over most of the annular space, except within thin wall 
layers of rapidly varying circulation. 

The work to be described set out t o  compare turbulent motion in strongly curved 
flows with that in essentially unidirectional mean flows in channels or in boundary 
layers on plane surfaces, and the axisymmetric Couette flow was selected as a 
well-defined example of curved flow. Since the object was to measure a wide range 
of flow quantities with hot-wire anemometers, the flow width and flow velocities 
chosen for experimental convenience dictated rotation speeds from one hundred to 
over one thousand times thc critical speed for first instability. As it turned out, 
although the flow Reynolds numbers are large, considcrablc changes in thc motion 
were observed as the rotation speed increased, and the reasons for them are of intwcst 
for the st-idy of specifically Couette flow. A consequence is that some of the 
measurements are of flow structure and relevant to theoretical treatments suc.h as 
those of Howard (1963) and Nickerson (1969), others are of local quantities sucah as 
Reynolds stress and turbulent intensity, which arc used in current calmlation 
methods for plane or weakly curved flow. 
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2. Notation 
The flow is described using cylindrical polar coordinates r ,  8, y, which are 

respectively the distance from the axis of rotation, the angular position and the 
displacement parallel to the axis. The corresponding components of flow velocity are 
w (in the direction of shear), U+u (in the flow direction), and V+v (parallel to the 
axis), where U and V are the mean velocities in the circumferential and axial 
directions, and should depend only on distance from the axis. The flow is essentially 
one of constant density, and stresses, torques and angular momenta are used in the 
kinematic forms, that  is, as the mechanical values divided by the fluid density. Then 

R,, R, are the radii of the inner and outer cylinders; 
I;, is the peripheral velocity of the inner cylinder; 
Re = U,( R, - R , ) / v  is the flow Reynolds number ; 

T=- 2(1--r) Re2 is the flow Taylor number; 
l + V  

7 = R J R ,  is the radius ratio ($ for the cylinders used) ; 
T, = 2337 is the critical Taylor number for instability of the laminar flow;? 
T* = TIT, is the Taylor-number ratio; 
- r l ,  r2 are the surface stresses exerted by the flow on the two cylinders; 
2nG = -2m1 Rf = 2nr,RE is the torque transmitted per unit length of cylinder; 
z = r -  R,, is the distance from the inner cylinder; 
d = R,-R,, is tke gap between the cylinders; 
U* = (U,- U) / r i  in the wall layer on the inner cylinder, or U / r t  in the layer on 

z* = T i ( r -  Rl)/v near the inner cylinder and r%(R2-r)/v near the outer cylinder; 
k ,  A are the constants for the logarithmic distribution of velocity in turbulent flow 

V,  is the axial convection velocity of the toroidal eddies; 
Rti(r; r )  = ui(z, t )  uj(z + r, t + 7) is the correlation function for velocity fluctuations 

at points separated by r in space and by r in time; 
& ( w )  is the frequency power spectrum of u i ;  
w* = wR,/U, is a non-dimensional frequency ratio. 

the outel; cylinder; 

near a plane wall ; 

The subscripts i a n d j  in the correlation and spectrum functions are 1 for u, the 
circumferential component, 2 for v, the axial component, and 3 for the radial 
component. 

3. Experimental arrangements 
The Couette flow is generated in the annular space between two concentric 

cylinders, the inner one of length 1-80 m and the outer of length 1.82 m. The inner 
cylinder, of diameter 305 mm, may be rotated about its axis of symmetry a t  
rotational speeds up to 24 rev/s, with a peripheral speed of 23 m/s. The outer cylinder 
is stationary and has a nominal inside diameter of 457 mm, although in places its 
shape differs from the cylindrical by one or two millimetres. The measurements 
described were made over the speed range 1.5-24rev/s, corresponding to flow 
Reynoldsnumbers from 7300 to 117000, or Taylornumbers from 2.1 x lo7 to 5.5 x lo9. 
From the calculations of Roberts (1965), the critical Taylor number for a radius ratio 

t The value of the critical Taylor number has been found by interpolation between values 
calculated by Roberts (1965). 
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of ?j is 2337 (or a critical Reynolds number of 7644), and the speed range covers Taylor 
numbers in ratios to the critical value from 0.9 x lo4 to 2.3 x 106, or ratios of rotational 
speed to critical speed from 95 to 1530. 

If the ends of the annular-flow space are closed, the velocity patterns of the toroidal 
eddies are stationary, and they do not cause variations in the outputs from stationary 
hot-wire anemometers. To avoid this difficulty, a slow axial flow was induced by 
having the ends of the flow space partially covered by dissimilar circular diaphragms 
mounted on the ends of the inner, rotating cylinder and extending to within a few 
centimetres of the outer cylinder. The dimensions of the diaphragms are not ciritical 
and their only noticeable effect on the flow is through the axial convection of the 
toroidal eddies past the anemometer. Typically, the eddy-convection velocity was of 
order 0405 of the peripheral velocity of the innw cylinder, or about 1 yo of the 
mean-flow velocity near the middle of the flow. 

Several forms of hot-wire anemometer have been used, all made from Wollaston 
wire with etched sections of platinum wire, with diameter 2.5 pm and lengths about 
1 mm. They were controlled by conventional const ant-resistance circuits to operate 
a t  overheat ratios of 0.5-0.6, and the frequency response is thought to be uniform 
to at  least 10 kHz. For the measurements of mean velocity and total turbulent 
intensity, the outputs were linearized by assuming that bridge voltages are related 
to flow velocity by E2 = a+b/J;+cU,, 

where h’ is the bridge voltage (proportional to current through the wire), and a ,  h ,  
c are constant for a particular wire. Here 

(3  1 )  

Uz = CT2[cos2 (@-#)+a sin2 (O-#)], (3.2) 

where t J  is the flow velocity, B is the angle of inclination of the flow to the wire 
support, and 4, 01 are constants for the wire. 

Mean values, mean squares and eovarianccs of the anemometer outputs were 
measured with a correlator that digitizes the outputs a t  regular intervals and 
accumulates sums, squares and products over set time intervals. Frequency spectra 
and space-time correlations were computed from digital recordings on magnetic tape. 
Any necessary amplification of the anemometer outputs was performed by amplifiers 
with a flat response from direct current to over 1 0  kHz. 

4. Distributions of mean velocity and mean angular momentum 
Careful measurements of mean velocity have bg.en made over the annular space 

for peripheral velocities of the inner cylinder from 1.71 m/s to 9.8 m/s,  for the most 
part with linearized hot wires calibrated in a neighbouring small wind tunnel but also 
with small Pitot-static tubes. It was found that U/N,, the ratio of mean-flow velocity 
to peripheral speed, was nearly independent of rotation rate a t  the position 
z / d  = ( Y - - R ~ ) / ( R ~ - R ~ )  = 0.581, with the value of 0.3901f:O.OOl. This reference pos- 
ition was later used for in s i f u  calibration, and, necessarily, all the distributions of 
mean velocity or mean angular momentum intersect at that point. 

Figure 1 shows distributions of the angular-momentum ratio U r / U , K ,  over the 
range of peripheral velocities used, for Taylor number ratios from 1.29 x lo4 to 
4-24 x lo5. To make clear the features of the distributions, figure 1 ( a )  has the scale 
of momentum ratio expanded around 0.5, figure l ( b )  has the scale of gap ratio 
expanded around zero, and figure 1 (c) has the scale expanded around one. For gap 
ratios between 0.1 and 0.9, the angular-momentum ratio is close to 0.50 a t  all speeds, 
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although radial gradients of the ratio are definitely positive. Values of the non- 
dimensional gradient of angular momentum d(  U r ) / d r  decrease systematically 
with increase of speed. 

Almost all the variation of angular momentum occurs within the two wall layers, 
each of thickness no more than one-tenth of the flow width, and, since surface stresses 
are expected to be nearly proportional to the power of the rotation speed, their 
thicknesses become less at the higher speeds. A measure of the effects of flow 
curvature is the parameter, 

the ratio of the angular velocity of the flow to the radial velocity gradient. I n  the 
central flow of nearly constant circulation, it is close to - 1, indicating a dominance 
of curvature, but velocity gradients in the inner parts of the wall layers become 
relatively larger as the Reynolds number increases and then the inner wall flow may 
be little affected by the flow curvature. 

The measurements have been replotted in non-dimensional forms appropriate to 
the dimensional consequences of making two extreme assumptions about the relative 
influences on the flow of curvature and velocity shear: (i) that curvature is so 
dominant that the analogy with natural convection in horizontally stratified fluids 
is valid, i.e. la1 is large everywhere except possibly deep within the viscous layers, 
and (ii) that  there is a substantial region in each wall layer within which is too 
small for flow curvature to have an appreciable effect. If curvature is dominant, the 
analogy with turbulent B6nard convection suggests that  distributions of angular 
momentum near the inner cylinder are of the form, 

where 
(4.2) 

(see appendix). If curvature has no effect, the logarithmic universal wall dist'ribution 
of velocit'y, 

IT, R,- I7r = T; r g ( q  z/v), (4.3) 
1 1  

should describe all the measurements deep within the wall layers. 
Figure 2 shows velocity distributions in non-dimensional forms using the scales 

of angular momentum and length from (4.2) and (4.3). N o  points have been plotted 
for measurements outside the wall layer, i.e. beyond the distance for which the 
angular momentum first equals the central value of$lr, R,. The values of surface stress 
are derived from careful measurements of Reynolds stress made in the central flow 
for a peripheral speed U ,  = 8.0 m/s, and a Reynolds number of 40640. The 
measurements, shown in figure 3, indicate an average value of the non-dimensional 
flux a/( CTl R,)2 of 1.10 x lop3, possibly accurate to 5 0;. Length and velocity scales 
for other speeds have been calculated by assuming the non-dimensional flux t'o vary 
either as Red (figure 2 a )  or as Re-4 (figures 2 b ,  c). 

Comparing t'he three plots, the best collapse of data is achieved by using scales from 
(4.3),  as if effects of flow curvature were negligible. In  fact', a collapse in the viscous 
regions ( z / z o  less bhan 3 in figures 2 (a, b ) ,  and z* less than 10 in figure 2 ( c ) )  is assured 
by each choice of scales if correct values of transmitted torque ha,ve been used, and 
t,he radial range of appreciable variation of velocit,y outside the viscous regions is not, 
large except a t  the higher speeds. For the three higher speeds and Reynolds numbers 
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of 5.0 x lo4, 2.8 x lo4 and 2.1 x lo4, a plot of (ti, - U ) / T ~  against In z* (figure 2 d )  shows 
that the measured values lie nearly along a straight line 

( u ~ - u ) / ~  = k-l(ln z * + ~ )  (4.4) 

for values of z* greater than thirty. The slope is consistent with a value of 041 for 
the Karman constant k ,  but the additive constant A is about 1.8, a little less than 
the more usual value of 8.2. 

Inspection of figures 2 (b ,  c ) ,  which use convective scales, shows that departure from 
the linear variation in the viscous layer begins a t  successively larger values of 
non-dimensional distance as the Reynolds number decreases, indicating that flow 
curvature is not a dominant influence even a t  the lower speeds. 

Measurements of velocity in the wall layer on the outer cylinder are more difficult, 
and positions ofthe hot-wire arp not as accurate. Figyres 2 ( e ,  f )  are non-dimensional 
plots using the inertial scales T ;  for velocity and v/7; for length, and they show the 
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measurements to be in fair agreement with the wall distribution (4.3) and, for values 
of z* greater than thirty, with the logarithmic distribution (4.4). 

Nakamura et al. (1981) have measured velocities near a cylinder rotating in 
essentially unbounded fluid, and they find that their results fit the distribution 

with k = 0.64 and A = 1.8. The measurements of figure 2 ( d )  are for values of 
( r -R , ) /& so small that  the distributions (4.4) and (4.5) are not distinguishable. 

5. The toroidal eddies 
From visualization studies of the Couette flow in the range of Taylor-number ratio 

400-105, Koschmieder (1979) and Barcilon et al. (1979) have shown that the greater 
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part of the motion is in the form of regularly spaced, toroidal eddies. If the annular 
space is sealed a t  both ends, the eddies are fixed in position and the flow patterns 
could be determined using a single sensor only by traversing in both the radial and 
axial directions. The toroidal eddies may be made to drift past a stationary 
anemometer by inducing an axial flow of magnitude small compared with flow 
velocities of the eddies. Then the anemometer output will oscillate with a passage 
frequency equal to  the axial convection velocity divided by the wavelength of the 
eddy spacing. For typical measurements, the axial convection velocities were no more 
than 1 O/’ of circumferential flow velocities, and even large flow patterns of dimensions 
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FIGURE 3. Radial distribution of the total radial flux of angular momentum expressed in the 
non-dimensional form W r 2 / (  U ,  R,)2,  for a Reynolds number of 45600 (T* = 355000). 

comparable with the flow perimeter cause fluctuations of more than ten times the 
passage frequency as they are convected by at roughly the circumferential velocity. 

The considerable difference in frequency between the contributions from the 
toroidal eddies and the non-axisymmetric irregular motion makes possible a clear 
separation. Figure 4 shows chart records of the output from a hot wire inclined to 
the mean flow at an angle of 45' in the diametral plane, after passage through a siinple 
resistance-capacity filter to reduce contributions from frequencies above 5 Hz. For 
the smaller Taylor-number ratios (less than 2 x lo5), the records show almost 
perfectly periodic fluctuations, but breaks and phase jumps become noticeable for 
ratios over 4 x lo5 and periodicity is almost absent for ratios over los. Figure 5 shows 
a series of chart records for a constant ratio of 9700 taken a t  various distances from 
the inner cylinder. The periodicity is good but the waveforms are far from sinusoidal, 
being peaked but symmetrical around the flow centre and asymmetric near the flow 
boundaries. 

The degree of coherence of the oscillations may be assessed more precisely from 
measurements of the autocorrelations of the anemometer outputs. Figure 6 shows 
correlations for the radial component of the velocity fluctuation, at a fixed position 
z/d = 0.374, for Taylor-number ratios of 0.67 x lo5, 4 2  x lo5, 8.6 x lo5 and 165 x lo5. 
For all but the shortest time delays, the autocorrelations can be represented very 
nearly by 

R33(7) = w(t )  w(t+7) ' 

= ( A  + B e ~ ' / ~ c )  cos ut 7 

where ut is the (radian) frequency of passage, A + B is the intensity of the toroidal 
eddies, B / A  is a measure of the fluctuations of amplitude, and T, is the coherence 
time. Values of the parameters are given in table 1 .  

A few digital recordings were made of the outputs from an array of eight single-wire 
anemometers, equally spaced along a line parallel to the axis of rotation with the 
sensitive elements a t  45O to the mean flow in the yOr-plane. Figure 7 shows space-time 
correlations for pairs of wires with separations 0, 10, 60, 70 mm, and a peripheral 
cylinder velocity of U ,  = 5.24 m/s or a Taylor-number ratio of 1.1 1 x lo5. Except for 
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FICVRE 4. Chart records of the outputs from a hot-wire anemometer responding nearly to 
fluctuations of u + ui, placed a t  z/d = 0.375 near the flow centre : (a) Re = 7800, T* = 10400, record 
duration 150 s ;  (b) 11800, 23800, 150 s: (c) 20200, 70000, 75 s;  (d )  36200, 224000, 75 s; (e) 51500, 
45.2000, 75 s ;  (f) 69000, 815000, 75 s. 

a change of phase, the correlations between separated wires are very nearly those for 
a single wire. The phase change increases with spatial separation in the way expected 
from axial convection of a periodic flow pattern a t  a velocity of 30 mm/s. For sensor 
separation of 70mm, the phase shift, is nearly 180", indicating a wavelength of 
1.10 mm, in a ratio of 1-9 to the cylinder separation. 

For the smaller rotation rates, the regularity of the oscillations is sufficient to  be 
synchronized with a phase-locked loop oscillator, and passage frequencies determined 
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FIGVRE 5. Chart records of the outputs from a hot-wire anemometer responding nearly to 
fluctuations of u+w, for a Reynolds number Re = 7540, T* = 9700: (a )  at z 'd  = 0.045; ( b )  0.12; 
(c) 0.375; ( d )  0635;  (e) 0.895. Length of records 150 s. 

in this way are shown in figure 8, together with frequencies from the autocorrelations. 
The passage frequencies are nearly proportional to peripheral speed, and, supposing 
the axial convection velocity to remain a constant fraction of that  speed, the eddy 
spacing is almost independent of Taylor number. 

6. Intensities of the toroidal and irregular motions 
The toroidal eddies have axisymmetric flow patterns, which are convected axially 

past a fixed sensor with convection velocities around 0.004 [TI. On the other hand, 
flow patterns with variation in the flow direction will be convected around the inner 
cylinder with velocities comparable to the peripheral speeds of flow, around 0.4 [TI, 
and the consequent fluctuations are of frequencies much higher than those produced 
by the toroidal eddies. The difference is so large that the respective mean-square 
fluctuations may be easily determined by use of simple low-pass filters. 
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FIGURE 6 (a ,  b ) .  For caption see p. 201. 

Assuming the spectrum of the irregular non-axisymmetric motion to be nearly 
independent of frequency over the pass band of the resistance-capacity filter, the 
mean square of fluctuations after passage through the filter is 

where 7 is the time constant of the filter, Qt is the mean square of fluctuations of the 
toroidal component,, wJ2n is the frequency of passage, and S / w ,  is the spectral 
intensity of the irregular component a t  low frequencies. 
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The results shown in figures 9 and 10 have been obtained by measuring variances 
and covariances of the outputs from X-wires, before and after passage through filters 
of three different time constants, typically 0.1 s, 0 2 2  s arid 047 s. Passage frequencies 
were found either from the output of a phase-locked oscillator or, for the higher 
rotation speeds, from an extrapolation of the frequency-speed plot (figure 8). and then 
values of Qt and S were selected for best fit to the three equations of the form (6.1). 
Although the waveforms of the toroidal variations are noticeably non-sinusoidal 
(figure 5 ) .  the intensities of the harmonics are less than 5 O 0  of the total and mag be 
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FIGURE 6. Time-delay correlations for the u and w velocity fluctuations for three rotation speeds 
at the position z /d  = 0635. (a) R11(7), ( 6 )  RS3(7), ( c )  &(7)  all for Re = 20900, T* = 70000. ( d )  R33(7) 
for Re = 51 500, T* = 454000. ( e )  R 3 3 ( ~ )  for Re = 74000, T* = 940000. (f) R33(7) for Re = 103000, 
T* = 1820000. Units of the vertical scales are the same for ( a x ) ,  Re = 20900, but have not been 
normalized. Values of 

neglected. Intensities of the irregular component were found by subtracting values 
of Qt from intensities measured without the filters. 

= R33(0) in the units are: (a)-(c) 19.6, (d )  83, ( e )  197, (f) 221. 

The main features of the intensity distributions are as follows. 

(a)  Toroidal eddies 
(i) Non-dimensional intensities of the axial component $/Q are small near the 

flow centre and reach maximum values within the wall layers. 
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_ -  
Re T* A / $  B / 2  T, ( J J 4  W T ,  u12 / tl? 

20 900 74 800 0.34 025 700 16.0 059 
51 500 454 000 0028 0185 390 7.3 0.2 1 
74000 940000 0.010 0066 140 3.5 0.076 

103 000 1 820000 0003 0.029 170 3.5 0032 

TABLE 1. Coherence of the  low-frequency oscillations of radial velocity. The quantit,ies '4, B and 
!i$ are those used in (5.1). If the initial decrease of autocorrelation a.rises entirely from variation 
of amplitude with no variation of phase, A is the square of the mean amplitude and R is t,he mean 
square of the deviation of the amplitude from its mean value A; .  
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FIGURE 7 (a, b). For caption see facing page. 

(ii) Intensities of the radial component $/U;  are small near the walls and reach 

( i i i )  Circumferential (streamwise) intensities 2/lj;, are much srnsller. 
maximum values near the flow centre. 

( b )  The irregular motiori 

(i)  Axial intensities $/Uf and circumferential intensities q/ l7;  have their mini- 

(i i)  Radial int,ensities$/ U;, reach maximum values near the flow cent>re. 
(i i i)  Near the flow centre, radial intensities exceed axial intensities, and axial 

intensities exceed circumferential (streamwise) intensities. The sequence of relative 
values is the reverse of that  found in unidirectional shear flows. 

With increase of rotation speed, the relative intensity of the toroidal motion falls 
off sharply. Figure 1 1  shows ratios of the toroidal intensity 3 to the total intensiby 
a t  a position near the flow centre for a range of rotation speeds. For Reynolds numbers 
less than 2 x lo4 (Taylor-number ratios less than 7 x lo5), the intensity of the toroidal 
component is greater than that of the irregular motion, but the intensit,y ratio 
decreases rapidly with increased speed and is around 0.05 for a Reynolds number of 
lo5 or a Taylor-number ratio of 1.5 x lo6. 

mum values near the flow cent>re. 
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FIGURE 7 .  Space t ime correlation coefficients from an array of eight wires, sensitive to  fluctuations 
of u + a  and placed in a line parallel to  the cylinder axis and close to the outer cylinder. (Re = 26600, 
T* = 121 000.) (a) autocorrelation for wire 1. (b) Correlation for wires separated by 10 mm. 
( c )  Correlation for wires separated by 60 mm. ( d )  Correlation for wires separated by 70 mm. 
( e )  Contours of equal correlation coefficient between a n  end wire and the other seven. 

7. Frequency spectra of the irregular motion 
From digital recordings of the outputs from X-wire anemometers, frequency 

spectra of the three velocity components have been calculated for ranges of frequency 
either 2-2000Hz or 0.5-500Hz and not including the passage frequency of the 
toroidal eddies. Several spectra are shown in figure 12, plotted as products o@(o) of 
frequency and spectral intensity, against logarithmic scales of the non-dimensional 
frequency w* = oR,/Crl, the ratio of frequency to rotation rate of the inner cylinder. 
With this presentation, areas under the spectral curve remain proportional to 
contributions to  total intensity from the particular range of frequency, and spectra 
of motions composed from eddies of similar size appear as peaked distributions with 
the maxima a t  frequencies comparable to the reciprocal of the average duration of 
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FIGURE 8. Passage frequency of the toroidal eddies as a function of cylinder rotation speed. 
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FIGURE 9(a ) .  For caption see facing page. 

eddy passage. For example, the spectra of many free turbulent flows resemble in form, 
$(o) = (1 +02)-l, for which the product w# has a maximum value of 0.5 for w = 1, 
decreasing to one-half of that  value for the frequencies w l ,  w2 = 2k 4 3 ,  whose ratio 
is 13.9 : 1. 

Compared with spectra of free turbulent flows, the measured spectra are very broad, 
with ratios of the half-intensity frequencies in the range 3&100, indicating that the 
fluctuations are composed of elements with an exceptionally wide range of durations 
contributing to the total intensity. Table 3 lists half-intensity frequencies and their 
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FIGT~RE 9. Component intensities of the toroidal eddies for a Reynolds number 

(T* = 455000). 
Re = 51 600 

ratios for four positions in the flow and for Reynolds numbers of 2.1 x lo4, 5-2 x lo4 
and 9.8 x lo4 (Taylor-number ratios of 0.75 x lo5, 046 x lo6 and 1.62 x lo6). All the 
ratios are considerably larger than the values in typical free turbulent flows, but they 
are much larger a t  the two higher speeds than a t  the lowest speed. 

If the fluctuations are composed of randomly occurring patterns of similar forms 
but variable duration, say uf[(t-t,)/7'Il, where a is an amplitude and T a measure 
of the duration, the contribution to the spectrum from patterns of a single duration 
is QTY(wT),  where Q is the total contribution, and Y ( w T )  is the power spectrum of 
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the pattern, normalized so that f , " Y ( x ) d x  = 1 .  With a continuous range of dura- 
tions. the total spwtrum is the sum of contributions from all durations, i.e. 

r m  
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FIGURE 11. Ratios of intensity of radial fluctuations of the toroidal motion to  that  of the whole 
motion, for a range of Reynolds numbers and in the central flow ( z / d  = 050). 

where Q f  T) dT is the contribution to the intensity from components with durations 
from T to T+dT. Using the logarithmic plotting of figure 12, it  is appropriate to use 
a distribution function P(T) = TQ( T )  specifying contributions from equal logarithmic 
ranges of duration, and then 

03 

w$(w)  = P(ln 7') @(ln T+ln w )  d(ln T), (7.2) 
J -03 

where @(x) = zY(z)  is the spectrum of a single component on the logarithmic scalc 
of frequency. 
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80 

- 
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RP U 

21 000 26 
52000 60 
98000 93 

KP U 

21 000 28 
.a 000 60 
98 000 73 

RP U 

21 000 26 
52 000 77 
98 000 97 

Central flow ( r - K 1  = 28 and 48 mm) 
Ratios Lower limit 

?' 11' U I '  U' 

30 30 0.9 1.1 0.8 
92 65 0.65 047 0-4 
- - 026 65 0.6 

Near inner cylinder ( T -  R, = 8 mm) 
I' U.1 U tl U' 

73 25 0.74 04 0.4 
230 60 0.8 0.3 0.9 

0.6 - - 1 0 2  1 2 

Near outer cylinder ( T -  R, = 68 mm) 
1' U' U t ,  U' 

62 30 0.73 0 4 5  1.17 

- 124 053 - 
- - 66 0.6 0.7 

0 4  

U 

24 
37 
57 

U 

34 
43 
84 

U 

19 
34 
51 

ITpper limit 

31 
42 

1' 

- 

t' 

52 
68 
- 

2, 

28 
37 
- 

U' 

22 
24 
16 

U' 

44 
53 
63 

U' 

35 
45 
50 

TABLE 2. Son-dimensional frequencies for spectral intensities of one-half the maximum value. 

Equation (7.2) states that q b  is the convolution of P(ln T) with the component 
spectrum @(ln o) on a logarithmic frequency scale, and so the (logarithmic) variance 
of the complete spectrum is the sum of the variances of the component spectrum and 
of the duration distribution function P(ln T ) .  Assuming that squares of logarithms 
of ratios of half-intensities combine in the same way, knowledge of the ratio for the 
component spectrum would permit calculation of the ratio of the durations for 
half-intensity in the duration distribution. I n  table 3, ratios for the spread of duration 
have been calculated by assuming that the half-intensity ratio for the component 
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Re U 

21 000 11 
52 000 30 
!I8 000 50 

Re ?I 

21 000 1 0  
52000 30 
98 000 37 

Re U 

21 000 10 
55 000 36 
98 000 52 

Central flow (for rl = 28 mm and 18 mm) 
Ratios Lower limits 

I' N U l *  u: 

11 1 1  1.45 1.45 145 
45 30 0.7 0.7 0. T 

35 ( ).X 0.35 

Near inner cylinder (for d = 8 mm) 

- - 

Ratios Lower limits 
? ?  U' 11 ?: U' 

70 10 1.4 0.6 1 4  
130 30 1.1 0.1 1.1 

55 1.6 0.4 - - 

Nrar outer cylinder (for d = 68 m m )  
Ratios Lower limits 

1. 1" U ?' IL' 

30 10 1.5 0 6  1.5 
- 36 0.7 0.7 
- 70 0.7 0.5 

- 

- 

u 

16 

40 

0 .? 
Y I  

U 

15 
32 
60 

U 

15 
5.1 
38 

1-pper limits 
1' U' 

10 15 
55 32 

45 - 

1:ppt.r limits 
I' ?I' 

20 15 
24 
35 

- 

- 

TABLE 3. Limibs to  the distrihutions of passage duration of  component eddies of the irregular 
rnotion, expressed as non-dimensional frequencies, which are themselves expressed as multiples of 
the rotation rate of the inner cylinder. For comparison, the non-dimensional orbital frequencirs 
are: 0.32 in the central flow at d = 38 mm: 0.5 near the inner cylinder; 0.25 near the outer cylinder. 

spectrum is ten, a value considcrcd to be appropriat'e for component eddies of simple 
form (for a spectrum $ ( x )  = exp ( -gxz). t'hc rat'io is 6.1 : 1 ; for #(x )  = (1 + x 2 ) - l ,  it is 
13.9: 1). C~orrectcd values for the upper and lower half-intensiby frequencies are also 
listed. 

Int'erpreting bhe ' correct'ed ' half-intensity frequencies of table 3 as reciprocals of 
tw iw the durations of the longest and shortest components, and identifying convect>ion 
velocities of the flow patterns with circumferential mean velocities, longitudinal scales 
of the irregular flow in the central region are found to change as follows. 

(i) The ratio of maximum to minimum scale increases for each velocity component 
by a factor of 3 to 4 as the Reynolds number increases from 21 000 to 52000. At the 
Reynolds number of 98000, the ratio for the circumferential component has increased 
by a further factor of 1.5, but the ratio for the radial component remains nearly the 
same. 

(ii) At the lowest rotation speed, the maximum scale is close to 100 mm for all 
three ve1ocit)y component's, increasing to 200 mm a t  the intermediat>e speed. (For 
comparison, the circumference is nearly 1-2 m and the flow gap 76 mm.) At the top 
speed, the scale for the radial component has increased to 400 mm, but that of the 
circumferential component is unchanged (but see below). 

(iii) Over the range of rotat>ion speeds, the minimum scale of the circumferential 
component decreases from 10 mm to 8 mm to 4 mm, while the scale of the radial 
component changes very little, from 10 mm to 8 mm to 11 mm. 

At) the upper Reynolds number of 98000 (5"" = 1-64 x lo6), the spectra of the 
circumferential and radial velocity components #11 and #33 are decidedly asymmetric 
on the logarithmic plot. As can be seen from figure 12, the spectral intensities are 
of similar magnitude for non-dimensional frequencies more than 20, but $11 is much 
smaller than #33 for frequencies in the range 0.1-5, in ratios of 8 t'o a. It appears that 
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radial velocities of the longer duration components are considerably greater than 
circumferential velocities, and that the motion is predominantly in the yOz-plane. 

The dissimilarity in shape between the two spectra for the upper Reynolds number 
has the effect of biasing the half-intensity frequencies in opposite directions, and the 
difference in maximum and minimum scales a t  that  Reynolds number is more due 
to the biasing than to  a real difference. 

8. Discussion of results 
Couette flow differs strongly from nearly unidirectional flows such as wakes, jets 

and channel flows in that flow structure changes very appreciably over a range of 
comparatively large Reynolds number. In  contrast, the energy-containing motion of 
unidirectional flows is nearly statistically similar for all Reynolds numbers more than 
some five times the critical. The most obvious structural change is the decrease in 
the fractional energy of the toroidal motion, from over one-half to  less than 
one-twentieth as the Reynolds number increases from one hundred to one thousand 
times the critical value, with accompanying changes in the spectra of the velocity 
fluctuations. 

In  Couette flow with the outer cylinder stationary, energy transfer from the mean 
flow to the fluctuations can occur by two very different kinds of instability. The 
mechanism of the first kind of instability resembles in many respects the Bknard 
instability in fluid heated from below in a gravitational field, and may be described 
as ‘convective’ instability. It favours the generation of roller eddies elongated in the 
flow direction, such as the toroidal eddies of the initial instability. The second kind, 
‘inertial ’ instability, occurs in channel flow between parallel walls, and usually leads 
directly to the formation of turbulent patches and bursts. In  Couette flows with not 
too small ratios of gap to  radius, the initial instability of the laminar flow is 
convective, occurring at a Reynolds number perhaps one-twentieth of that  for the 
inertial transition in parallel flow, and, even when the flow becomes irregular, energy 
transfer to the fluctuations is by the convective mechanism. 

The relative strengths of the two modes of instability is associated with the value 
of the curvature parameter, a = ( V / Y ) / ( ~ U / ~ Y ) ,  the ratio of the flow angular velocity, 
on which the convective instability depends, to the velocity gradient, which is the 
energy source for the inertial instability. At large Reynolds numbers, most of the 
variation of mean velocity is within the thin wall layers whose thicknesses decrease 
steadily with increase of speed. It follows that, deep within them, values of the 
curvature parameter become small, and that,  a t  sufficiently large Reynolds numbers, 
the local motion will be relatively unaffected by flow rotation and may develop 
inertial modes of energy transfer similar to those for plane flow. From consideration 
of upper bounds to  the flow properties, Nickerson (1969) came to a similar conclusion 
and estimated that the change would occur a t  Reynolds numbers 3ver lo4. 

If inertial effects are dominant close to the walls, each wall layer should consist 
of h viscous region of nearly uniform velocity gradient, an ‘inertial ’ layer of turbulent 
flow similar to that on plane surfaces, and an outer transition layer in which curvature 
becomes important and angular momentum rapidly approaches the constant central 
value. The two outer regions are similar in properties to those in plane boundary layers 
with upward heat flux. Below a height proportional to the Monin-Obukhov length, 
the flow is little affected by buoyancy forces, and the distributions of velocity and 
temperature are logarithmic. Above that height, velocity and temperature appoach 
constant values. In  Couette flow, the analogue of the Monin-Obukhov length i s  
G : / 2 k  Urn, where 17, is the velocity just outside the layer. 
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Re Ul R,/@ G:/v  ,* 'C a, Outer as0 Inner a50 

10000 253 790 30 ( - 026) ( - 0.36) ( -0.30) 
20000 27.6 1450 47 ( -0.23) ( -0.20) ( -0.20) 
50000 309 3 230 94 - 0203 -0088 -0.108 

100 000 33.7 5 930 167 -0197 - 0048 - 0080 
200 000 36.8 10870 312 -0201 - 0026 - 0043 

TABLE 4. Curvature parameters in a layer with logarithmic distribution of velocity. It has been 
assumed that G / ( U , R , ) 2  is proportional to Red, with a value of 11.0 x for Re = 4.06 x lo4. The 
constants of the logarithmic velocity distribution are taken to be k = 0.41, A = 1.8. The values of 
a are for the (extrapolated) edge of the wall layers, and for the positions of z* = 50 on the outer 
and inner layers. Bracketed values have no physical meaning since the calculated value of zf is 
too small for a logarithmic distribution. 

To assess the likelihood of inertial flow, assume that the velocity distribution 
outside the viscous layer is logarithmic, terminating where the calculated velocity 
becomes equal to the velocity just outside the layer, i.e. 

1 

i r2 
k 

IT = 2 (In z* + A )  

U = U, -- (In z* + A )  
k 

(outer cylinder), 

712 
(inner cylinder) 

in each case, for z* less than z:, where 

Then values of the curvature parameter are calculated as 

(8.2) 

At the limits of the logarithmic profiles, the value is 

Table 4 lists for a range of Reynolds numbers, ( a )  values of z: and a,, specifying 
the position of the layer limit and the curvature parameter there, and ( b )  values of 
the curvature parameter a t  z* = 50 in each layer. If z,* is less than fifty, no significant 
region of logarithmic variation of velocity can exist, a condition that excludes any 
flow of Reynolds number less than 20000. At z* = 50, the curvature parameter might 
be considered as becoming small for Reynolds numbers above 50000, sufficiently so 
to make plausible existence of a region of turbulent motion similar t o  that on a plane 
wall. 

Values of the friction coefficient G / ( U , R , ) 2  used in compiling the table assume a 
variation as the -t power of the Reynolds number. Such a variation is consistent 
with measured velocity gradients in the viscous regions, but bhe constancy of the 
tabulated values of a, indicates that  almost the same values of the friction coefficient 
for Reynolds numbers over 40000 would be obtained by assuming a constant value 
of a, = -0.20. 
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In the real flow there is a t'ransition layer, extending from where a logarit>hmic 
distribution of velocity implies a curvature parameter of significant magnibude and 
merging into the central region of constant angular momentum. For a Reynolds 
number of 50000, the variation of angular momenturn between z* = 50 and t,he 
central flow is hardly 5 O b  of the total variation in the wall lager, and it is difficult 
to distinguish the transit'ion layer from the inertial layer. 

For Reynolds numbers less than about 30000, curvat'ure affect's the whole of the 
flow, and t.ransfer of angular momentum from the viscous layer to the central region 
must be by eddies whose motion is strongly constrained by flow curvature. The 
photographs of Barcilon P t  al. (1979), t'aken in flows of Reynolds numbers up to 22000 
(a Taylor-number ratio of SOOOO), show, in addition to the largc-seale toroidal eddies, 
long c4rcumferent)ial streaks, identified by them as the result of Giirtler vortices 
similar to those found in boundary layers on concave surfaces. Diamctcrs of the 
vortices are comparable to the thickness of the wall layer, and they transfer angular 
momentum to t>he central flow sufficiently smoothly not to disrupt the toroidal eddies. 

Wit'h increase of Reynolds number from 30000 to  80000, the peripheral coherence 
of the t,oroidal eddics becomes less and they either disappear into fully irregular, 
turbulent flow or, more probably, become too fragmented or distorted to be easily 
distinguishable. That t'hey exist in fragmented form is suggested by comparison of 
spect>ra taken near the flow centre for Reynolds numbers of 20900 and 97000 (figures 
l % b ,  e) .  At the lower Reynolds number, spectra of t'he radial and circumferential 
velocity components are of similar form, with a lower limit a t  non-dimensional 
frequency near one and comparable int.ensities. At the higher R.eynolds number, the 
lower frequency limit of the circumferential spectrum is hardly changed, but the 
radial spectrum extends to  about 0.2 and, over a range of frequencies from 0.3 to 1.0, 
its intensit>ies are greater in ratios of three or four to  one. The regular toroids have, 
near the flow centre, velocit'y fluct,uations almost entirely in the radial direction, and 
so the spectra are consistent with the presence oftoroids of lengths ranging from about 
onc-half of the flow perimeter to something comparable to the flow width. 

A possible reason for the loss of regularity of the toroidal eddies is t'hat t'he transfer 
of momentum across the wall layers is no longer by Gortler vortices elongated in the 
stream direction. If the motion deep within the layers now resembles turbulent flow 
on a plane wall, most of the transfer will be irregular, 'bursting' motions without 
extensive coherence in either the circumferential or axial directions, and the smooth 
boundary conditions necessary for formation of highly regular toroids no longer exist. 

Another indication that the flow is changing in character is the decrease in 
magnit>ude of the overshoots in t,he distributions of angular momentum (figure 1 a,). 
The decrease in magnitude runs nearly parallel with the decrease in the fractional 
intensity of the toroidal eddies (figure 11) .  It is likely that the overshoots are caused 
by t'ransfer of angular momentum from one wall layer directly to the other by toroidal 
eddies spanning the entire flow, and their disappearance would indicate, that, 
undisturbed t'ransfer is less common a t  the higher Reynolds numbers. Without 
extensive measurements of velocity correlations, the radial extents of the toroidal 
fragments is uncertain, but the reduction of overshoot suggests that' a t  least a 
proportion of them span only part of the flow width. 

We review some of the result's and conclusions. 
( i )  For Reynolds numbers less t'han 40000 (Taylor-number ratios less than 250000) 

the central flow is dominated by regular toroidal eddies, equally spaced along the 
cylinder axis and with motion nearly confined to axial planes. 

(ii) For Reynolds numbers over 40000 the central motion becomes increasingly 
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irregular. Spect'rum measurements indicate that much of the 1arg;e-scale motion may 
consist of finite sections of toroidal eddies, of lengths from one or two flow widths 
to half the flow perimeter. 

(iii) Over the same range of Reynolds number, regions appear in the wall layers 
within which the curvature parameter is moderately small, and distributions of mean 
velocity resemble closely the universal dist,ribution for t>urbulent flow over a plane 
surface. 

(iv) The transition region bct>ween the central flow of constant angular momentum 
and the outer limit of logarithmic variation is too limited in ext)ent, to be easily 
distinguishable. If the logarithmic profile is extrapolat>ed to the central flow, the 
wnt>ral angular moment'um is attained for a (calculated) curvat'ure parameter of 
- 0.20. 

( v )  The overshoots in the distributions of angular momentum diminish with 
Reynolds number, possibly because of reduced radial extent of eddies in the central 
flow. 

( v i )  Theoretical models for turbulent flow at high Reynolds numbers have been 
proposed by Landau (Landau & Lifshitz 1959) and by Malkus (1954, 1956), each 
suggesting t'hat the flow may be t>reated as t,he superposition of normal modes of the 
~t~abili ty equat'ion. The inferred reduction in radial ext'ent of the roller eddies in the 
central flow lends some support to t.he models. 

Appendix. The analogy between Couette and stratified flows 
In  steady-state Couette flow between concentric cylinders, the equations for 

angular momentum flux, for balance of mean-square angular momentum fluctuation, 
and for balance of the kinetic energy of the radial and axial velocity components axe 

- __ 
MP d I d  ~ u d p  ~ 

_-  ( ITr) + - - ( & ~ ~ z r r )  + - - = vuV2u,  
r d r  r dr r a0 

They may be compared with the equations for buoyancy flux, for balance of mean 
square buoyancy fluctuations, and for balance of turbulent kinetic energy in steady 
BGnard convection between parallel horizontal planes : 

.. . 

-dT d ~ 

u0ul -+a - (@2?ir) = a k m ,  
d i  dz  

(A 2 )  1 
where a is the coefficient of thermal expansion. T is the mean temperature at  height 
2 ,  8 is the temperature fluctuation, Q is the constant thermometric heat flux. and I P  

is the velocity fluctuation in the vertical z-direction. 
Comparison of the two sets of equations suggests an analogy between the two flows. 

the angular momentum flux E r ,  analogous to the buoyancy flux a=, 2U/r2  to 9,  
and d( U r ) / d r  to a d T / d z .  Some necessary conditions for validity are : 

( i )  that circumferential pressure gradients, ap/d0, are small : 
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(i i)  that  circumferential velocity fluctuations are distinct in function from the axial 
and radial fluctuations, which compare with the three-dimensional motion of the 
Benard convection ; 

(iii) that  radial variation of 2U/r2  can be ignored; 
(iv) that  the range of r is small. 

Then the functional form of the variation of angular momentum near one cylinder 
of a Couette flow may be found using arguments similar to those for BBnard 
convection. 

If variation of Ur is confined to  thin wall layers, each layer may be considered as 
uninfluenced by the presence of the other, and the radial and axial motion within 
it is determined by the angular-momentum flux, ?cu,r = G / r ,  by 2 U / r 2 ,  and by the 
fluid viscosity. The analogue of gravity, 2 U / r 2 ,  is far from constant, but transfer of 
energy to the radial-axial motion is appreciable only in the outer region, where the 
total variation is about 25 yo. A typical or effective value is 2Um/r2 ,  where Urn is the 
velocity on the outer edge of the wall layer. 

On these assumptions, the velocity scale for the radial-axial motion is 

and the lengt'hscale is 3 8  

zo = 
(2GUm)i' 

Angular-momentum fluctuations ur  are transferred by velocity fluctuations of 
magnitude u,, and so the scale of angular momentum variation is 

The distribution of mean angular momentum near a eylinder of radius R, moving 
with peripheral velocity U,  will be of the form 

U r -  U,R, = p ,  f ( z / z o )  

where necessarily f(7) = 9 for small values of 7 = z / z o  within the viscous layer. The 
total variation across the wall layer is 

Since lTr is almost constant outside the wall layers, p ,  has the same value in each 
layer, and the central value of the mean angular momentum is the average of the 
wall values. 

For the experimental arrangement with the outer cylinder stationary, the central 
value of angular momentum is illl R,, and the relation between torque coefficient 
G/lJ: R; and Reynolds number Rl/v is 

-- 
G 

Uf Rf 

For l ~ l R l / ~ ~  = 81300, the torque coefficient is 1.1 x 10F3, and the 'constant' C is 
calculated to be 4.9, to be compared with values near 3.5 in BBnard convection. Using 
the estimated value for the lowest speed (1.7 m/s), C is found to be 445. 
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